请您输入您的关键词,以便更快的了解我们最新的新闻和产品信息
版权所有©重庆为讯科学仪器有限责任公司 2024 地址:重庆两江新区水土高新城云汉大道105号半导体产业园A5栋6F-8F
ICP备案/许可证号:渝ICP备2023002157号-1
技术支持:瑞秀科技
技术应用
Water Resources Research
Shaojie Hu;Chao Zhang;Ning Lu
Soil matric potential and osmotic potential are widely accepted as two independent components of total soil water potential. However, laboratory observations repeatedly demonstrated that matric potential can vary with salt concentration, implying a potential coupling between matric potential and osmotic potential. To date, it remains elusive whether matric potential and osmotic potential are independent or not and why so, and a theoretical theory for quantifying the coupling between them is still missing. Herein, a theoretical model is developed to quantitatively explain this problem via a lens provided by a recent concept of soil sorptive potential (SSP). The proposed model substantiates that matric potential and osmotic potential are not independent. The increasing salt concentration can notably depress two variables underpinning SSP, namely relative permittivity and electrical double layer thickness, leading to non-negligible decreasing (more negative) of matric potential in the high suction range, and increasing (less negative) of it in the low suction range. In turn, the soil-water interactions redistribute ions in soil water, raising osmotic potential especially for clay with high cation exchange capacity. The proposed model shows excellent performance in capturing experimental data, validating its accuracy. A parametric study implies that the neglection of coupling effects can lead to a significant underestimation of soil hydraulic conductivity in the film flow regime.