请您输入您的关键词,以便更快的了解我们最新的新闻和产品信息
版权所有©重庆为讯科学仪器有限责任公司 2024 地址:重庆两江新区水土高新城云汉大道105号半导体产业园A5栋6F-8F
ICP备案/许可证号:渝ICP备2023002157号-1
技术支持:瑞秀科技
技术应用
Soil & Tillage Research
Hu Feinan, Xu Chenyang, Li Hang, Li Song, Yu Zhenghong, Li Yue, He Xinhua
Soil aggregates profoundly influence soil fertility and environmental problems, and usually improving soil aggregation is the central issue in soil management. Compared with external forces, the internal forces of soil, i.e., surface hydration force, electrostatic force and van der Waals force, may play a crucial role in aggregate formation and stability. However, there are few quantitative investigations on those fundamental issues. In the present work we aim to calculate surface hydration force, electrostatic force and van der Waals force of soil/clay particles in aqueous solution, and then quantitatively evaluate the effects of the three forces on soil/clay aggregates breakdown. There was critical surface potential in particles interaction pressure and aggregates breakdown, and if the surface potential exceeded this critical point, a further increase of the surface potential could not significantly increase particles interaction pressure and aggregate breakdown. The critical surface potentials for particle interaction pressure were 207.0 and 179.7 mV for the soil and montmorillonite, respectively. Our study suggested two steps in aggregate breakdown when dried aggregates were re-wetted: (1) separating soil particles in aggregates to a distance of 1.2-1.4 nm between two adjacent particle surfaces by the surface hydration forces (swelling process); (2) breaking soil aggregates in a way of explosion or dispersion under strong or weak electric field conditions. Surface hydration force played a crucial role in aggregate swelling, and without this repulsive pressure, a dried aggregate could not be dispersed again after re-wetting. (C) 2014 Elsevier B.V. All rights reserved.